BHAVAN'S VIVEKANANDA COLLEGE DEPARTMENT OF MATHEMATICS \& STATISTICS
 ACADEMIC ORGANISER CBCS 19-20

B.Sc. I YEAR

Sub- MATHEMATICS

SEMESTER -I
PAPER - MT121

DIFFERENTIAL EQUATIONS \& GROUPTHEORY

UNIT NO.	SUB UNIT	TOPICS	PERIODS PER
	1	UNIT III Groups-I (18)	
	1	Introduction	1
	2	Groups-Definition and Elementary Properties	4
	3	Finite Groups and Group Tables	3
	4	Subgroups	3
	5	Cyclic Groups-Elementary properties, cyclic subgroups	7
	2	UNIT IV Groups-II (15)	
$\stackrel{\rightharpoonup}{2}$	1	Permutations -functions and permutations	1
	2	Cycles and cyclic notations	1
	3	Even and odd permutations,	1
	4	Groups of permutations, Alternating groups	1
$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	5	Groups of Coset	3
	6	Criteria for the existance of a coset group	1
	7	Inner automorphism and Normal Subgroups, Definition of Factor group	2
	8	Homomorphisms-Def. and Elementary properties	2
	9	The fundamental theorem of homomrphism, applications	1
	10	Isomorphism-Def. and Elementary properties,cayley's theorem	2
	3	UNIT ID.E. of First Order and First Degree (15)	
	1	Introduction	1
	2	Partial differentiation	1
	3	Exact Differential Equations	2
	4	Non-Exact Differential Equations,Integrating factors, Methods	6
	5	Linear Differential Equations	3
	6	Differential Equations Reducible to Linear Form	2
	4	D.E. of the First Order but not of the First Degree (12)	
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \infty \\ & \stackrel{\rightharpoonup}{u} \\ & 山 \sim ~ \end{aligned}$	1	Equations Solvable for p	3
	2	Equations Solvable for y	2
	3	Equations Solvable for x	2
	4	Clairaut's Equation	2
	5	Total differential equations	3
		GRAND TOTAL	60

BHAVAN'S VIVEKANANDA COLLEGE DEPARTMENT OF MATHEMATICS \& STATISTICS
 ACADEMIC ORGANISER CBCS 19-20

B.Sc. I YEAR

Sub- MATHEMATICS

SEMESTER-II
PAPER- MT221

DIFFERENTIAL CALCULUS \&HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

UNIT NO.	$\begin{aligned} & \text { SUB } \\ & \text { UNIT } \end{aligned}$	TOPICS	$\begin{gathered} \hline \text { PERIOD } \\ \text { S PER } \\ \text { SUBUNI } \\ \mathrm{T} \\ \hline \end{gathered}$
1		Differential Calculus I (15)	
$\begin{aligned} & \text { Z } \\ & \mathbf{Z} \end{aligned}$	1	Introduction	1
	2	Succesive differentiation	3
	3	Calculation of nth derivatives of standard, rational \& products of powers of sines and cosines	2
	4	The nth derivative of product of two functions.	3
U	5	Leibnitz's thereom	2
	6	Partial differntiation	1
	7	Homogeneous functions and Eulers theorem.	2
	8	Total derivatives	1
2		Differential Calculus II (15)	
$\begin{aligned} & u \\ & 0 \\ & 0 \end{aligned}$	1	Neighbourhood, interval, supremum, infimum, limits, continuity, differentiabilit	1
	2	Rolles, lagranges \& Cauchy's theorem with geometric explanation.	4
	3	Taylors and Maclaurins series	3
$\underset{3}{2}$	4	Expansion of functions,Taylors and Maclaurins theorem	3
	5	Indeterminate forms	3
	6	Maxima and minima of two variables	1
3		Higher Order Linear Differential Equations-I (15)	
$\underset{3}{2}$	1	Solution of Homogeneous Linear Differential Equations of Order n with Constant Coefficients	3
	2	Solution of Non-homogeneous Linear Differential Equations with Constant Coefficients by means of Polynomial Operators($\mathrm{e}^{\wedge} \mathrm{ax}$,sinbx or cosbx)	4
$\stackrel{\mu}{\underline{\omega}}$	3	Solution of Non-homogeneous Linear Differential Equations with Constant Coefficients by means of Polynomial Operators($x^{\wedge} k, e^{\wedge} \mathrm{axv}$, xv)	8
4		Higher Order Linear Differential Equations II (15)	
	1	Method of Variations of Parameters(Non-homogeneous Linear Differential Equations with Constant Coeff.)	3
	2	Method of undetermined coefficients	3
	3	Reduction of order method	3
	4	The Cauchy-Euler Equation	3
	5	Legender's equation	3

BHAVAN'S VIVEKANANDA COLLEGE DEPARTMENT OF MATHEMATICS \& STATISTICS

ACADEMIC ORGANISER 19-20
RING THEORY \& PARTIAL DIFFERENTIAL EQUATIONS
B.Sc. II YEAR

SEMESTER -III
Sub- MATHEMATICS
PAPER- MT321

UNIT NO.	SUB UNIT	TOPICS	PERIODS PER SUBUNIT
1	Rings-I (15)		
$\stackrel{\text { T }}{\mathbf{Z}}$	1	Introduction	1
	2	Rings-Def. ,Some non-commutative Examples, basic properties	2
	3	Divisors of zero , cacellation laws	2
	4	Integral Domains, Fields	3
	5	Characteristic of a ring	2
JULY	6	Ideals and Factor Rings.	5
2	Rings-II (15)		
$\frac{\lambda}{3}$	1	Homomorphisms of rings-Def, elementary properties, kernal of homomorshism	4
	2	Maximal and prime ideals, Prime fields	4
	3	Rings of Polynomials-Polynomials in an indeterminate form	4
	4	The evaluation homomorphism	3
3	PARTIAL DIFFERENTIAL EQUATIONS-I (15)		
$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \end{aligned}$	1	Introduction	1
	2	Formation of partial differential equations	3
	3	Easilyintegrable partial differential equations	1
	4	Linear partial differential equations of first order	2
	5	Non Linear partial differential equations of first order	5
SEP	6	Charpits method	3
4	PARTIAL DIFFERENTIAL EQUATIONS-II (15)		
	1	Homogeneous linear equations with constant coefficients	8
	2	Non Homogeneous linear partialdifferential equations	4
	3	Separation of variables	3

BHAVAN'S VIVEKANANDA COLLEGE
DEPARTMENT OF MATHEMATICS \& STATISTICS
ACADEMIC ORGANISER 19-20
REAL ANALYSIS
B.Sc. II YEAR

Sub- MATHEMATICS

SEMESTER -IV
PAPER- MT421

UNIT NO.	SUB UNIT	TOPICS	PERIODS PER SUBUNIT
1	UNIT-I (15)		
NOV	1	Limit of Sequences	4
	2	Limit Theorems for Sequences	4
DEC	3	Monotone Sequences	4
	4	Cauchy Sequences	3
2	UNIT-II (15)		
DEC	1	Subsequences	4
	2	Lim sup's and Lim inf's	1
JAN	3	Series	5
	4	Alternating Series	3
	5	Integral Tests	2
3	UNIT-III (15)		
JAN	1	Sequences of functions	3
	2	Series of functions	3
	3	Power Series	3
FEB	4	Uniform Convergence	3
	5	Differentiation and Intergration of Power Series(Theorems in this section without proofs)	3
4	UNIT-IV (15)		
 MARCH	1	The Riemann Integral	5
	2	Properties of Riemann Integral	5
	3	Fundamental Theorem of Calculus	5

DEPARTMENT OF MATHEMATICS
BHAVAN'S VIVEKANANDA COLLEGE
ACADEMIC ORGANISER
MATHEMATICS PAPER III
B.Sc. - III Year SEM -V(2019-20)

MT 521-LINEAR ALGEBRA

UNIT NO.	$\begin{aligned} & \text { SUB } \\ & \text { UNIT } \end{aligned}$	TOPICS	$\begin{array}{\|c\|} \hline \text { PERIODS } \\ \text { PER } \\ \text { SUBUNIT } \end{array}$	total PERIODS
1		VECTOR SPACES-I		17
JUNE	1	Vector Space and Subspace	3	
	2	Linear combinations, Subspace spanned by a set	3	
	3	Linearly Independent and dependent sets	3	
JULY	4	Basis	3	
	5	The co-ordinate system	2	
	6	The dimension of a vector space	3	
2		VECTOR SPACES-II		
JULY	1	Null space, Column space and Row space of a matrix	2	10
	2	Basis and dimensions of Null space, Column space and Row space of a matrix	2	
	3	Linear Transformations, Kernel and range of Linear Transformations	2	
AUG	4	Rank and rank theorem	3	
	5	Matrix of a Linear Transformations.	1	
3		EIGEN VALUES AND EIGEN VECTORS		8
AUG	1	Eigen values, Eigen Vectors	2	
	2	The characteristic Equation	2	
SEP	3	Diagonalization	3	
	4	Complex Eigen values.	1	
4		INNER PRODUCT OF VECTORS		
OCT	1	Inner Product, Length and Orthogonality	3	10
	2	Orthogonal set	2	
	3	Gram-Schmidt Process	3	
	4	Orthonormal Basis.	2	
GRAND TOTAL				45

BHAVAN'S VIVEKANANDA COLLEGE
OF SCIENCE, HUMANITIES AND COMMERCE
Sainikpuri, Secunderabad-500094
Autonomous College
Affiliated to Osmania University
TEACHING PLAN: 2019-20
Program: B. Sc (M/E//P/S/Cs)
Paper Title: MT521A: VECTOR CALCULUS
$\left.\begin{array}{|c|c|c|}\hline \begin{array}{l}\text { DEPARTMENT OF } \\ \text { MATHEMATICS AND } \\ \text { STATISTICS }\end{array} & \text { YEAR/SEMESTER } & \text { III/VI }\end{array} \begin{array}{l}\frac{\text { NO.OF CLASSES PER WEEK }}{\text { 3 HRS PER WEEK(45) }} \\ \text { PRACTICALS 2 CLASSESPER }\end{array}\right]$ WEEK

MONTH	UNIT	TOPIC	$\frac{\text { NUMBER OF }}{\text { CLASSES }}$
JUNE\& JULY	I	Vector differentiation and partial differentiation	5
		Vector differential operators Gradient,Divergence, Curl	5
		Formulae involving Del	2
		Problems related Gradient,Divergence, Curl	3
	II	Definite Integral, Line Integrals	4
		Surface Integrals.	6
AUGUST	III	Volume Integrals	5
		Gauss Divergence theorem and its applications	5
SEPTEMBER \&OCTOBER	IV	GREENS theorem and its applications	5
		STOKES theorem and its applications	5
		Total Classes	45

DEPARTMENT OF MATHEMATICS
BHAVAN'S VIVEKANANDA COLLEGE
ACADEMIC ORGANISER
MATHEMATICS PAPER III
B.Sc. - III Year SEM -VI(2019-20)

MT 621A-SOLID GEOMETRY

UNIT NO.	SUB UNIT	TOPICS	$\begin{array}{\|c\|} \hline \text { PERIODS } \\ \text { PER } \\ \text { SUBUNIT } \end{array}$	total PERIODS
1		SPHERES		13
NOV	1	Introduction, Definition, Equation of a sphere	2	
	2	Sphere through four given points,, Equation of a Sphere under Different Conditions	3	
DEC	3	Equation of a circle	2	
	4	Intersection of a Sphere and a Line	2	
	5	Equation of a Tangent Plane	2	
	6	Angle of Intersection of Two Spheres	2	
2		CONES		
DEC	1	Introduction, Definition	2	10
	2	Condition that the General Equation of the Second Degree should represent a Cone	3	
JAN	3	Cone and a Plane through its Vertex	5	
3		CONES AND CYLINDERS		12
JAN	1	Intersection of a line with a cone, Intersection of Two Cones with a Common Vertex	4	
	2	Right Circular Cone	3	
	3	Enveloping cylinder, The Cylinder	4	
FEB	4	Right Circular Cylinder	1	
4		CONICOIDS		
FEB	1	The general equation of the Second Degree	2	10
	2	Central conicoids	2	
	3	Intersection of the Line with a Conicoid	1	
MAR	4	Tangent line, Tangent planes and normal to conicoid	5	
GRAND TOTAL				45

BHAVAN'S VIVEKANANDA COLLEGE

 OF SCIENCE, HUMANITIES AND COMMERCESainikpuri, Secunderabad-500094
Autonomous College
Affiliated to Osmania University
TEACHING PLAN: 2019-20
Program: B. Sc (M/E//P/S/Cs)
Paper Title: MT621: NUMERICAL ANALYSIS

DEPARTMENT OF MATHEMATICS AND STATISTICS	YEAR SEMESTER	NO.OF CLASSES PER WEEK 3HRS PER WEEK (45) PRACTICALS 2 CLASSESPER

DEPARTMENT OF MATHEMATICS

BHAVAN'S VIVEKANANDA COLLEGE

Autonomous College
ACADEMIC ORGANISER 19-20
SEM-5 GENERIC ELECTIVEI GE521

UNIT NO.	SUB UNIT	TOPICS	PERIODS PER SUBUNIT	TOTAL PERIODS
UNIT1				
June	1	Percentages	5	20
July	2	Averages	5	
Aug	3	Ratio	5	
	4	Proportion	5	
UNIT2				10
Aug \& Sep	1	Modular Arithmetics	10	30
		Total	30	30

DEPARTMENT OF MATHEMATICS
BHAVAN'S VIVEKANANDA COLLEGE
Autonomous College
ACADEMIC ORGANISER 19-20
SEM-6 GENERIC ELECTIVE II GE 621

UNIT NO.	SUB UNIT	TOPICS	PERIODS PER SUBUNIT	TOTAL PERIODS					
UNIT1									
Nov\&Dec	1	Time and work	10	20					
Dec \& Jan	2	Time and distance	10						
UNIT2		Methods of Feb				1	solving equations in one variable.	10	10
		Total	30	30					

DEPARTMENT OF MATHEMATICS AND STATISTICS
BHAVAN'S VIVEKANANDA COLLEGE
Autonomous College
ACADEMIC ORGANISER 19-20
Skill Enhancement Course-SEM3
THEORY OF EQUATIONS SE321

UNIT NO.	$\begin{aligned} & \text { SUB } \\ & \text { UNIT } \end{aligned}$	TOPICS	$\begin{array}{\|c\|} \hline \text { PERIODS } \\ \text { PER } \\ \text { SUBUNIT } \end{array}$	TOTAL PERIODS
UNIT1				
JUNE	1	Graphic representation of a polynomial	1	15
	2	Maxima and minima of polynomials	1	
	3	Theorems relating to the real roots of equations	4	
JULY	4	Existence of a root in the general equation,Imaginary roots	4	
	5	Theorem determining the number of roots of an equation,Equal roots,Imaginary roots	4	
	6	Descarte's rule of signs for positive roots and negative roots.	1	
UNIT2				
		Relations between the roots and coefficients	3	
AUG		Theorems, Application of the Theorem	2	
		Depression of an equation when a relation exists between two of it's roots	3	15
		The cube roots of unity	4	
AUG \& SEP		Symmetric Functions of the roots	3	
		TOTAL	30	30

DEPARTMENT OF MATHEMATICS AND STATISTICS

BHAVAN'S VIVEKANANDA COLLEGE
Autonomous College
ACADEMIC ORGANISER 19-20
Skill Enhancement Course-SEM4
LOGIC AND SETS SE421

UNIT NO.	SUB UNIT	TOPICS	$\begin{array}{\|c\|} \hline \text { PERIODS } \\ \text { PER } \\ \text { SUBUNIT } \\ \hline \end{array}$	TOTAL PERIODS
UNIT1				
NOV	1	Basic connectives and truth tables	4	15
	2	logical equivalence: Laws of logic	4	
DEC	3	Rules inference :The use of quantifiers, Quantifiers	4	
	4	Definitions and proofs of theorems.	3	
UNIT2				
JAN	1	Sets and subsets, Set operations and the laws of set theory	6	15
JAN \& FEB	2	counting and Venn diagrams	4	
	3	The axioms of probability,Conditional probability, independence-discrete random variables	5	
		TOTAL	30	30

DEPARTMENT OF MATHEMATICS AND STATISTICS

BHAVAN'S VIVEKANANDA COLLEGE
Autonomous College
ACADEMIC ORGANISER 19-20
Skill Enhancement Course-SEM6
GRAPH THEORY SE621

UNIT NO.	SUB UNIT	TOPICS	PERIODS PER SUBUNIT	TOTAL PERIODS
UNIT1				
JUNE	1	Definition of Graph \& Basic properties	6	15
JULY	2	Examples of graphs,	2	
	3	Isomorphisim of graphs.	7	
UNIT2				
	1	Paths and circuits	3	15
AUG	2	Eulerian circuits	3	
SEP	3	Hamiltonian cycles, adjacency matrix	4	
	4	shortest path algorithm	5	
		TOTAL	30	30

DEPARTMENT OF MATHEMATICS AND STATISTICS BHAVAN'S VIVEKANANDA COLLEGE

Autonomous College
ACADEMIC ORGANISER 19-20
Skill Enhancement Course-SEMe 5
NUMBER THEORY SE 521

UNIT NO.	SUB UNIT	TOPICS	$\begin{array}{\|c\|} \hline \text { PERIODS } \\ \text { PER } \\ \text { SUBUNIT } \\ \hline \end{array}$	TOTAL PERIODS
UNIT1				
JUNE	1	The division algorithm, number patterns	2	15
JULY	2	prime and composite numbers, Fibonacci and Lucas' numbers	4	
	3	Fermat numbers, GCD	4	
AUG	4	LCM, Linear concurrences	5	
UNIT2				
	1	Divisibility tests, Modular designs	2	15
AUG	2	Check digits, The Chinese Remainder Theorem	4	
SEP	3	Wilson's theorem	4	
	4	Fermat's Theorem, Euler's Theorem	5	
		TOTAL		

